#### **CENTRAL EVERGLADES PLANNING PROJECT** Soil Restoration Thresholds Specific to Central Everglades Planning Project Success

GEER Conference 2015 Session 15 Performance Measures for Central Everglades Adaptive Management

Presented by: Andrew LoSchiavo U.S. Army Corps of Engineers, Jacksonville District

April 21,2015





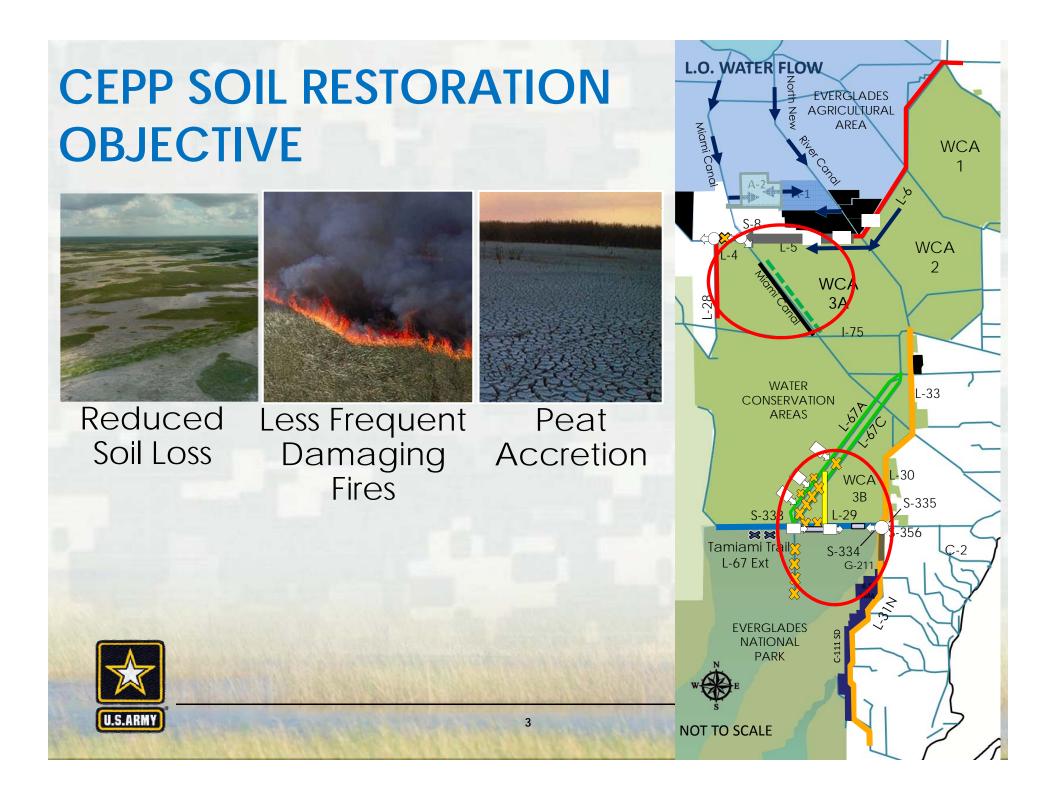











### **OVERVIEW**

- CEPP Objective Reduce Soil Subsidence & Damaging Peat Fires
- Soil & Fire History
- Soils & Landscape Rebuilding
- Climate Change Factor
- Soil Regeneration Slow
- Potential Parameters to Measure
- Potential Soil Performance Thresholds





**BUILDING STRONG** 





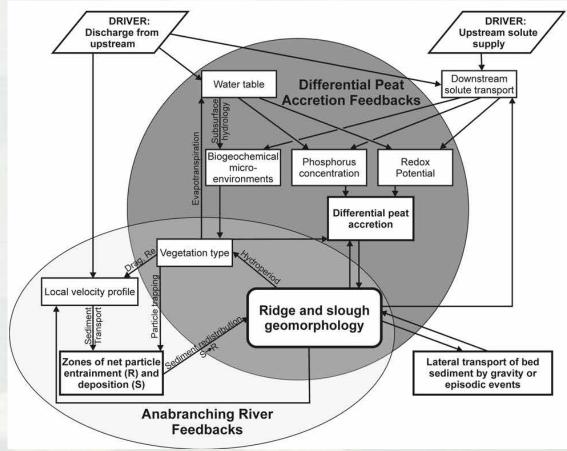
## SOIL & FIRE HISTORY IN EVERGLADES

| AREA   | M^3 PEAT<br>LOST | METRIC TONS<br>CO2 LOST | SUBSIDENCE<br>AVERAGE (M) |
|--------|------------------|-------------------------|---------------------------|
| WCA-3A | 1.3x10^9         | 6.2x10^8                | 0.6                       |
| WCA-3B | 2.5x10^8         | 1.2x10^8                | 0.6                       |
| ENP    | 1.2x10^8         | 6.1x10^7                | 0.01                      |

Courtesy of: Aich, S. and T. W. Dreschel, 2011. Florida Scientist







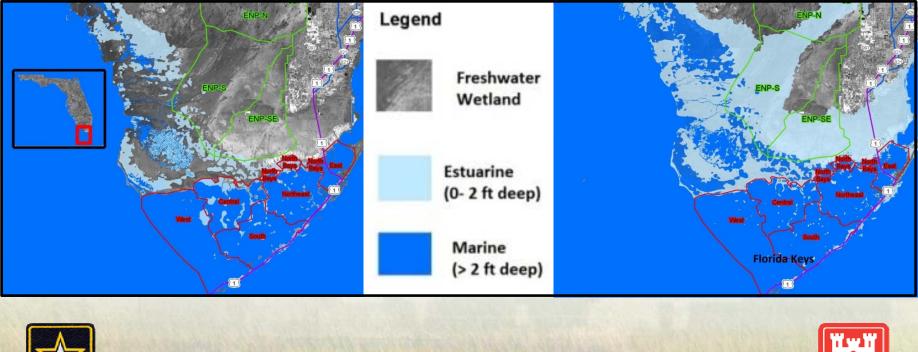

#### **SOILS & LANDSCAPE REBUILDING**

5

#### Differential Peat Accretion = Ridge & Slough Landscape

- Water depth
  & solute transport
- Water velocity
  & particle movement
- Vegetation type




Larsen, L.G., J.W. Harvey, and J.P. Crimaldi, 2007 - Ecological Monographs





#### CLIMATE CHANGE EFFECTS & ECOSYSTEM RESILIENCY

- Less rainfall & more evapotranspiration = less peat soil
- Increase sea-level rise = less peat soil



**BUILDING STRONG**®



#### **SLOW RATES OF SOIL REGENERATION**

| AREA                          | PEAT PER YEAR<br>(MM) | CARBON (G*M)<br>PER YEAR | 5 YEAR<br>ESTIMATE | 10 YEAR<br>ESTIMATE |
|-------------------------------|-----------------------|--------------------------|--------------------|---------------------|
| Overdrained<br>WCA 3A         | 2.0                   | 88                       | 1 cm               | 2 cm                |
| WCA 3A                        | 2.0                   | 70                       | 1 cm               | 2 cm                |
| Long<br>Hydroperiod<br>WCA 3A | 2.8                   | 127                      | 1.4 cm             | 2.8 cm              |

Craft, C. B., and C. J. Richardson, 1993, Ecological Applications

#### Meaningful Management Timeframes: 1-5 years





## POTENTIAL PARAMETERS TO MEASURE

| PARAMETER                                           | JUSTIFICATION                                                                                   |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Soil Moisture Content                               | Higher soil moisture content evidence of preservation                                           |
| Organic vs. Inorganic Volumes<br>and Concentrations | Higher Organic soil content evidence of peat maintenance &/or accretion                         |
| pH, Cations [Mg2+, Ca2+]                            | Indicative of local mineral conditions as well as products from the breakdown of organic matter |
| Nutrients,                                          | Higher nutrients influences peat accretion rates & landscape type                               |
| Peat Accretion                                      | Restoration objective as a precursor to landscape restoration                                   |
| Vegetation Type                                     | Influences degree of decaying matter deposited into soil – higher rates                         |
| Long-term Measurements                              | Measure conversion to more stable version of peat                                               |









**BUILDING STRONG®** 

### **SOIL RESTORATION THRESHOLDS**

- Statistically significant increases in soil moisture content
- Organic soil characteristics moving towards reference conditions
- Soil porewater & non-extractive nutrient contents move towards reference conditions
- Peat elevation increases in ridges & tree islands
- Coast Soil porewater salinity conditions decrease









# **QUESTIONS?**



